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Abstract. We study the ground state properties of a superconductor-ferromagnet-insulator trilayer on the
basis of a Hubbard Model featuring exchange splitting in the ferromagnet and electron-electron attrac-
tion in the superconductor. We solve the spin-polarized Hartree-Fock-Gorkov equations together with the
Maxwell’s equation (Ampere’s law) fully self-consistently with respect to the order parameter and the
current. For certain values of the exchange splitting we find that a spontaneous spin polarized current
is generated in the ground state and is intimately related to Andreev bound states at the Fermi level.
Moreover, the polarization of the current strongly depends on the band filling.

PACS. 74.50.+r Proximity effect – 74.80.-g Spatially inhomogeneous structures – 72.25.-b Spin polarized
transport

1 Introduction

Recently, the proximity effect between a superconductor
(SC) and a ferromagnet (FM) has attracted much at-
tention because, due to advances in materials growth and
fabrication techniques [1], well controlled structures, in
which it can occur became available. Such FM/SC hy-
brid structures are important from the point of view of
their intrinsic scientific interest, as they allow the study
of the interplay between ferromagnetism and supercon-
ductivity [2] as well as of device applications in such areas
of technology as magnetoelectronics [3] or quantum com-
puting [4].

In the present context the proximity, on one hand,
means the leakage of superconductivity into the ferromag-
net, and on the other, the spin polarization of the super-
conductor. In normal metal-superconductor systems the
proximity effect has been studied over 30 years, and is now
well understood [5] to be governed by the Andreev reflec-
tion [6] processes, in which an electron at the interface is
reflected as a hole while a Cooper pair is transfered into
superconductor. This mechanism makes the movement of
electrons and holes in the normal metal highly coherent.

If the normal metal is replaced by a ferromagnet a
number of new phenomena may occur [7]. For instance
one may expect a version of the FFLO state, predicted
in the sixties for a bulk superconductor in a strong spin
exchange field, by Fulde and Ferrell [8] and Larkin and
Ovchinikov [9], to be realized. In the bulk, as is well
known, the exchange field tends to polarize the conduc-
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tion electrons and holes. In particular if these electrons are
Cooper paired, naively one would expect that either the
exchange field is too weak to break the pairs, or it leads
to the first order phase transition to the normal state.
However, as was demonstrated in references [8,9], for cer-
tain values of the exchange field a new superconducting
depairing state is realized through first order phase tran-
sition from the BCS state and it transforms continuously,
by a second order phase transition, into the normal state
as the strength of the exchange field is increased. This
FFLO state has a spatially dependent order parameter
corresponding to the nonzero center of mass motion of the
Cooper pairs. Another novel feature of this state is a cur-
rent flowing in the ground state. The unpaired electrons
tend to congregate at one portion of the Fermi surface
so a quasiparticle current is produced. In order to satisfy
the Bloch theorem [8]: no current in the ground state, a
supercurrent, generated by the nonzero value of the pair-
ing momentum, flows in opposite direction, and the total
current is zero.

Interestingly, similar oscillations of the pairing ampli-
tude (Cooper pair density) have been predicted [10–13]
in a ferromagnet proximity coupled to a superconductor.
It turns out that these oscillations are responsible for the
oscillatory dependence of the critical temperature on the
thickness of the ferromagnetic slab [11,12]. This effect as
well as the corresponding oscillations of the density of
states at the Fermi level [15,16], have been observed ex-
perimentally [14,17]. In this paper we investigate further
the ramifications of these interesting phenomena.

One of these is the formation of so called π junction
state [18] which is also a fingerprint of the oscillatory
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Fig. 1. Schematic view of the (finite thickness) ferromagnet-semi-infinite superconductor heterostructure. Directions of the
magnetic field (B) as well as vector potential (A) and current (J) are indicated.

behaviour of the pairing amplitude. The π-state effect has
been extensively studied in connection with the high-Tc

and other exotic superconductors, where due to spatial in-
homogeneity of the order parameter, the Cooper pair wave
function can change sign at the interface and this leads to
the formation of a zero-energy mid-gap state. Remark-
ably, this zero-energy state is unstable to the occurrence
of a spontaneous current flowing parallel to and within a
coherence length of the interface (see eg. [19–21] and ref-
erences therein). In what follows we report on our finding
similar spontaneous currents but of different origin in a
SC/FM/I trilayer.

We also find zero energy bound states due to the finite
size of the FM slab. In fact even for a N/SC heterostruc-
ture, in agreement with [22], we have found states within
the SC gap. Although the energy of these states depend on
the thickness of the normal metal, they never reach zero,
namely εF . Interestingly, when the normal metal is re-
placed by a ferromagnet, these bound states split, and for
certain values of the exchange field, they cross the Fermi
level [16]. As we shall show, this circumstance leads to a
current flow. Clearly, the spontaneous current is strictly
related to the zero energy states, as in the case of the
high-Tc superconductors, but the origin of these states is
completely different. As mentioned above, there are two
competing parts to the total current in the FFLO state.
One is related to the unpaired electron movement and the
other is a supercurrent. So one may expect, that in the
case of the FM/SC heterostructure, these parts could be
spatially unbalanced creating regions of net current flow.
Indeed this is what we have discovered.

A brief report of our main results has already been
published [23]. Here we wish to present a more detailed
and systematic study of the zero energy Andreev bound
states and the corresponding spontaneous current in the
FM/SC heterostructures. The paper is organized as fol-
lows: in Section 2 the simple model which allows for self-
consistent description of the FM/SC heterostructure is
introduced. We also derive equations which have to be
solved self-consistently. In particular, these include the
Maxwell’s equation (Ampere’s law) for the coupling of
the current to the magnetic field. Then we describe some
technical details concerning the principal layer technique,
which allows us to describe a semi-infinite superconduc-
tor. In Section 3 the nature of the Andreev bound states

in the ferromagnet is discussed. The spontaneously gen-
erated current and corresponding magnetic field in the
ground state are studied in the Section 4. In Section 5 we
provide some suggestions of how one might observe the
spontaneous current and its polarization experimentally.
Finally, we conclude in Section 6.

2 The model

2.1 Negative U Hubbard model with exchange splitting

To study spontaneous currents and their polarization in
the ferromagnet-superconductor heterostructure we have
adopted a single orbital, nearest neighbour hopping Hub-
bard model with negative U on the SC side and zero U
otherwise. Additionally we have assumed the site ener-
gies εiσ to be exchange split in the ferromagnet and spin
independent in the superconductor. Moreover, the sim-
plest geometry allowing for a current flow is the 2D sys-
tem, shown in Figure 1, where the magnetic field in one
direction, the vector potential and the current in another
and the spatial modulation in a third orthogonal direction
are explicitly indicated. In short, our model Hamiltonian
is given in the form:

H =
∑
ijσ

[tij + (εiσ − µ)δij ]c+
iσcjσ +

∑
iσ

Ui

2
n̂iσn̂i−σ (1)

where, in the presence of a vector potential A(r), the hop-
ping integral is given by tij = −te−ie

∫ rj
ri

A(r)·dr for near-
est neighbour lattice sites, whose positions are ri and rj ,
and zero otherwise. The site energies εiσ are 0 on the
superconducting side and equal to 1

2Eexσ on the ferro-
magnetic side, µ is the chemical potential, the on-site in-
teraction Ui is US < 0 in the superconductor and zero
elsewhere, c+

iσ, (ciσ) are the usual electron creation (anni-
hilation) operators and n̂iσ = c+

iσciσ is the electron num-
ber operator. Note that the above description of the elec-
trons with charges e includes a coupling to a magnetic
field B(r) = ∇ × A(r), which is necessary for calculating
the effects of current on the electronic states. Further-
more, the exchange field is taken to be a bulk value and
in these preliminary calculations we made no effort to be
self-consistent with respect to the magnetization.
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Ĥnm(ky) =




1

2
Eexδnm − T− −∆nδnm 0 0

−∆nδnm
1

2
Eexδnm + T+ 0 0

0 0 −1

2
Eexδnm − T− ∆nδnm

0 0 ∆nδnm −1

2
Eexδnm + T+




(3)

M̂(ω, ky) =




M̂−NF ,−NF M̂−NF ,−NF +1 0 0 0 0 0 0 0

M̂−NF +1,−NF M̂−NF +1,−NF +1 M̂−NF +1,−NF +2 0 0 0 0 0 0

0
. . .

. . .
. . . 0 0 0 0 0

0 0 M̂0,−1 M̂00 M̂01 0 0 0 0

0 0 0 M̂1,0 M̂1,1 M̂1,2 0 0 0

0 0 0 0
. . .

. . .
. . . 0 0

0 0 0 0 0 M̂NS ,NS−1 M̂NS ,NS M̂NS ,NS+1 0

0 0 0 0 0 0
. . .

. . .
. . .




. (4)

In what follows we shall work within the Spin-
Polarized-Hartree-Fock-Gorkov (SPHFG) approxima-
tion, which means that we have approximated the interac-
tion term in the Hamiltonian (1) by the usual mean field
theory mapping: n̂i↑n̂i↓ → 〈ci↓ci↑〉c+

i↑c
+
i↓ + 〈c+

i↑c
+
i↓〉ci↓ci↑.

For the magnetic field we have chosen the Landau gauge
where B = (0, 0, Bz(x)) and hence A = (0, Ay(x), 0). Fur-
thermore, we have assumed that the effective SPHFG
Hamiltonian is periodic in the direction parallel to the in-
terface and therefore we work in k space in the y direction
but in real space in the x-direction (see Fig. 1). Labelling
the ‘planes’ (lines) in Figure 1 by integers n and m at each
ky point of the Brillouin zone we shall solve the following
SPHFG layer index (n) matrix equation for the retarded
Green’s function matrix Ĝm′m(ω, ky):

∑
m′ky

(
ωτ̂0δnm′ − Ĥnm′(ky)

)
Ĝm′m(ω, ky) = δnm (2)

where τ̂0 is the Pauli unit matrix and Ĥnm(ky) is of the
form:

see equation (3) above

with T± = (t cos(ky ± eAy(n)) + µ)δnm + tδn,n+1.

2.2 Semi-infinite superconductor

Our system consists of infinite number of layers (n), be-
cause we have a semi-infinite superconductor. The FM
region spreads from n = −NF to 0, while the supercon-
ductor is defined for n ≥ 1 (see Fig. 1). In order to de-
scribe the semi-infinite system, we need infinite range ma-
trix with block elements M̂nm(ω, ky) = ωτ̂0δnm−Ĥnm(ky)
(n, m going from −NF through 0 to ∞). In short, strictly
speaking, we have to invert the infinite range matrix:

see equation (4) above

To render the problem traceable, it is useful to define the
surface Green’s function (SGF ) [24] as

Gsf
n,n(ω, ky) = {[M̂n>NS(ω, ky)]−1}n,n (5)

M̂n>NS(ω, ky) being the semi-infinite submatrix for
n, m > NS (lower right corner of the matrix in equa-
tion (4)). The physical meaning of the SGF is that it
represents a square diagonal subblock corresponding to
the semi-infinite bulk shown with a shaded region in Fig-
ure 1.

Now we can assume, that the electronic properties in
the SC differ from that in the bulk only over the finite
distance from the interface (1 < n < NS). NS can corre-
spond to the distance of a few SC coherence lengths. For
n > NS the electronic properties are that of the bulk su-
perconductor. In other words, we assume that the system
for n > NS is homogeneous. Namely, for n > NS we have:

M̂n,n(ω, ky) = M̂NS,NS(ω, ky)

M̂n,n+1(ω, ky) = M̂NS,NS+1(ω, ky)

M̂n+1,n(ω, ky) = M̂NS+1,NS(ω, ky).

(6)

As a consequence the surface Green’s function (5) is also
n-independent and can be obtained from the bulk GF [24]:

Ĝsf (ω, ky) = ĜNS ,NS(ω, ky)

× (1 + M̂NS+1,NS (ω, ky)ĜNS ,NS+1(ω, ky))−1 (7)

where Ĝn,m(ω, ky) is the Fourier transform of
the Green’s function of the homogeneous super-
conductor Ĝ(ω, kx, ky), namely Ĝn,m(ω, ky) =

1
Nkx

∑
kx

Ĝ(ω, kx, ky)e−ikx(Rn−Rm). Clearly, the Green’s
function Ĝ(ω, kx, ky) for the case where the vector
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M̂(ω, ky) =




M̂−NF ,−NF M̂−NF ,−NF +1 0 0 0 0 0

M̂−NF +1,−NF M̂−NF +1,−NF +1 M̂−NF +1,−NF +2 0 0 0 0

0
. . .

. . .
. . . 0 0 0

0 0 M̂0,−1 M̂00 M̂01 0 0

0 0 0 M̂1,0 M̂1,1 M̂1,2 0

0 0 0 0
. . .

. . .
. . .

0 0 0 0 0 M̂NS ,NS−1 M̂NS ,NS − Γ̂NS




. (9)

potential is equal to zero is given by the usual result:

Ĝ(ω, kx, ky) =
1

ω2 − (ξ2
k + ∆2)

×




ω + ξk −∆ 0 0
−∆ ω − ξk 0 0
0 0 ω + ξk ∆

0 0 ∆ ω − ξk


 (8)

where ξk = −2t(cos(kx)+cos(ky))−µ is the single electron
energy spectrum.

The homogeneity of the system for n > NS leads to
the conclusion, that the inversion of a semi-infinite block
tridiagonal matrix (4) can be reduced to the inversion of
the finite tridiagonal matrix:

see equation (9) above

In the above equation the effect of the semi-infinite ho-
mogeneous system is contained in the ’embedding poten-
tial’ Γ̂NS , which is related to the surface Green’s function
through:

Γ̂NS (ω, ky) = M̂NS,NS+1(ω, ky)

× Ĝsf (ω, ky)M̂NS+1,NS(ω, ky). (10)

Evidently, by increasing NS until Ĝnm(ω, ky) in the
surface region does not change would constitute an exact
albeit numerical solution of the equation (2). All calcula-
tions reported here were performed for NS = 20. However,
we have checked that larger NS has no influence on the
results.

2.3 Finite temperature method

The calculation of the various physical quantities, like par-
ticle concentration nn, spin polarization mn, order pa-
rameter ∆n, etc., needs the evaluation of integrals of the
product of the Green’s function and Fermi distribution
function as in

∫
dωG(ω)f(ω). While working on the real

energy axis, we need a large number of integration points
to get good accuracy, unless there are no singularities
in the density of states. However, in our calculations,
there is a Van Hove singularity in the 2D DOS as well
as BCS-like singularities. In fact we need approximately
103–104 points to get good accuracy, which is very time-
consuming in self-consistent calculations. The situation

is similar for summation over the Matsubara energies
ων = (2ν + 1)πi/β because of the poles of the Fermi func-
tion. There is an infinite number of poles, and this infinite
sum does not always converge well, so numerical treatment
needs a large number of data points.

To overcome these difficulties we follow reference [25]
and approximate the Fermi distribution function by:

f c(ω) =
1(

ω+σ
σ

)2N + 1
· (11)

To get the correct behaviour near the Fermi energy (EF =
0) we choose 2N = βσ. One can check, that the discrep-
ancy between the approximate function and the true one,
starts to play role for energies lower than 2σ. If we choose
2σ > W , where W = 2t is the half of the bandwidth, the
approximation works very well. For example, for the tem-
perature T = 10−2t it is sufficient to consider only 150
points to get very good accuracy.

The poles of the approximate function lie on a circle
given by

(
ω + σ

σ

)2N

+ 1 = 0. (12)

The solution of the above equation gives the poles in
the form:

ω = −σ + σe(2ν+1)πi/2N . (13)

In the limit σ → ∞, the poles (13) move to the Matsubara
energies, and the number of poles, 2N , becomes infinite.

The calculation of any physical quantity becomes:

〈Ô〉 =
2
π

2N−1∑
ν=0

ReG(ων)e(2ν+1)πi/2N (14)

where ων is given by equation (13).

2.4 Self-consistency with the Ampere’s law

As usual in problems of interfaces, a large number of
equations has to be solved self-consistently. In our case
the parameters, to be determined self-consistently at each
layer n, are: the total electron density nn, the spin polar-
ization mn, the SC order parameter ∆n, the current par-
allel to the interface Jy(n) and the vector potential Ay(n).
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Most of these quantities can be expressed in terms of the
corresponding layer-diagonal elements of the Green’s func-
tions Ĝnn(ω, ky) (see Eq. (3)). The exception is the vector
potential, for which we need an additional (Maxwell’s)
equation. These relations are (see Eq. (14)):

nn = nn↑ + nn↓ =
2
β

∑
ky

2N−1∑
ν=0

× Re
{
(G11

nn(ων , ky) + G33
nn(ων , ky))e(2ν+1)πi/2N

}
(15)

mn = nn↑ − nn↓ =
2
β

∑
ky

2N−1∑
ν=0

×

× Re
{

(G11
nn(ων , ky) − G33

nn(ων , ky))e(2ν+1)πi/2N
}

(16)

∆n = Un

∑
ky

〈cn↓(ky)cn↑(ky)〉

=
2Un

β

∑
ky

2N−1∑
ν=0

Re
{
G12

nn(ων , ky)e(2ν+1)πi/2N
}

(17)

where Gij
nn(ω, ky) is the ijth element of the matrix Green’s

function, which is the solution of the SPHFG equation
(Eq. (2)).

The current, for spin up electrons, in the y-direction
can be calculated from the relation:

Jy↑(↓)(n) =
4et

β

∑
ky

sin(ky − eAy(n))

×
2N−1∑
ν=0

Re
{

G11(33)
nn (ων , ky)e(2ν+1)πi/2N

}

(18)

which follows from the continuity equation for the charge
(edni

dt = −e[ni, H ]− = −∑
j Jij).

This current will give rise to a vector potential Anew(r)
which will have to be used to update A(r) in equation (2)
at the end of each self-consistency cycle. We calculated
this new vector potential by solving numerically Ampere’s
law, d2Ay(x)

dx2 = −4πJy(x), which for the lattice problem at
hand, is

Ay(n + 1) − 2Ay(n) + Ay(n − 1) = −4πJy(n). (19)

In all our calculations equations (15–19) have been
solved in each iteration step until self-consistency has been
achieved. The numerical calculations have been performed
at temperature T = 10−2t for 150 energy points, 120-ky

points and 40 layers (20 ferromagnetic and 20 supercon-
ducting). Typically self-consistency, at the level of 0.01 %
on all densities in equations (15–19), has been achieved
after 100–200 iterations.

0

0.1

0.2

0.3

0.4

-20 -15 -10 -5 0 5 10

m
n

n

Eex=1.88

1.40

1.08

0.76

0.44

0.13

Fig. 2. Magnetization as a function of the distance from the
interface for a number of exchange fields (Eex) and US = −2,
which gives ∆S = 0.376 in units of the hopping integral t.

3 Andreev bound states in ferromagnet

3.1 Superconducting and ferromagnetic order
parameters

Since we have determined the ferromagnetic (16) and su-
perconducting (17) order parameters on both sides of the
interface fully self-consistently, we were able to study both
SC and FM proximity effects. This means, that we were
able to describe situations in which ferromagnetism and
superconductivity coexist near the interface.

Firstly, we want to discuss the magnetic proximity ef-
fect, namely the entering of the spin polarization into the
superconductor. The typical behaviour of the spin polar-
ization (mn = nn↑ − nn↓) is plotted in the Figure 2 as
a function of the layer index n for a number of exchange
splittings Eex. Note that mn calculated is the response to
the bulk value of the exchange splitting, which has not
been updated at the end of each self-consistency cycle. A
similar procedure was used by Zhu and Ting [26] with very
similar results to those we have obtained. Returning to the
results we can see that the spin polarization exponentially
decays over the distance of the SC coherence lengths ξS ,
which in the present case is ξS ≈ 3 in units of the lattice
constant a. We have checked this by explicit calculations
of ξS for various values of the superconducting energy gap.
So we can conclude that effect of proximity of the ferro-
magnet on the superconductor is very similar to case of
the Meissner effect, where an external magnetic field is
excluded from the sample. Note however that while the
magnetic field is excluded on the spatial scale of the pen-
etration depth the effective exchange field drops to zero
within the distance of the coherence length ξS in the su-
perconductor. Similar behavior of the induced exchange
splitting in SC was obtained by Tokuyasu et al. [27].

More interesting is the behaviour of the spin polar-
ization on the ferromagnetic side of the heterostructure.
As it is seen from Figure 2, it oscillates around its bulk
value with period depending on the exchange splitting Eex
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but not on the superconducting gap. However we were
not able to fit the numerical points to any simple rela-
tion between parameters of the model. The best fit we
have is mn ∝ sin ((1.74Eex + 0.5)n). Whilst this means
that the period of the oscillations is a linear function of
the exchange splitting the above relation is valid only for
the thickness of the FM slab d = 20 layers. For different
thicknesses we have different relations and different num-
bers of period within the slab. For example, for d = 10,
mn shows one period less for the corresponding exchange
splittings Eex.

We now turn to the superconducting proximity effect,
namely the leakage of the SC properties into the non-
superconducting region. In our case, although ∆n = 0
on the ferromagnetic side, due to the fact that for n ≤ 0,
Un = 0, the pairing amplitude χn = 〈cn↓cn↑〉 can, in gen-
eral, be non-zero and it usually is.

The proximity effect is well understood in the
case of non-magnetic metal-superconductor interface
(NM/SC) [5] in terms of the Andreev reflections [6]. The
Andreev process describes a situation in which an electron
impinging onto the NM/SC interface is reflected back as
a hole (with opposite spin) and a Cooper pair is created
in the SC. Moreover, the movement of the electrons and
holes in the NM close to the interface (over the distance
of the SC coherence length ξS) is highly correlated. The
pairing amplitude, in this case, enters the normal metal
and decays exponentially over the ξS .

When the normal metal is replaced by a ferromagnet
one might naively expect that the proximity effect will be
suppressed due to the pair breaking effect of the exchange
field [28] . This suggests that the pairing amplitude χn

will decay over a distance much shorter than the super-
conducting coherence length. Remarkably, as we can see
in Figure 3, this is not the case. Instead, we can observe a
very long range proximity effect with an oscillating pair-
ing amplitude. This effect has been first noted by Buzdin
et al. [10,11] and have been studied in several recent publi-
cations [12,13,16,26,29–31]. According to them, it can be
attributed to a FFLO-like phenomena [8,9] in FM/SC
heterostructures. The period of the oscillations of the χn

depends on the exchange splitting Eex (see Fig. 3) and,
similarly to the oscillations of mn, does not depend on
the superconducting energy gap. Clearly this behaviour is
different from NM/SC case, where the proximity effect
depends on the SC coherence length ξS . Here, it depends
only on the properties of the ferromagnet. Moreover, the
numerically obtained behaviour of the pairing amplitude
χn is consistent with the analytical formula

χn ∝ sin (n/ξF )/(n/ξF ) (20)

with ξF = 2t/Eex being ferromagnetic coherence length.
Reassuringly this result is fully consistent with those of
references [13,16,26,29–31]. The comparison our numeri-
cal results with the formula (20) for the exchange split-
ting Eex = 1.88, which gives ξF = 1.06 is depicted
in the inset of the Figure 3. In fact we had to change
ξF by 5%, in order to get better fit. So the solid line
in the inset of the Figure 3 corresponds to the formula
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Fig. 3. The pairing amplitude −χn vs. layer index n for
three values of the exchange field Eex. Note that we plot −χn

which corresponds to positive ∆n for Un > 0. Inset: Com-
parison of the numerical results with the analytical formula
χn ∝ sin (n/ξF )/(n/ξF ) for the exchange field Eex = 1.88,
which gives ξF = 1.06. In fact we had to change ξF by 5%
in order to get better agreement. The solid line is our fit:
χn = 0.021 sin (n/ξ̃F − 2.5)/(n/ξ̃F ), where ξ̃F = ξF /1.05.

χn = 0.021 sin (n/ξ̃F − 2.5)/(n/ξ̃F ) with ξ̃F = ξF /1.05. It
turns out that as exchange splitting becomes smaller the
fitting to the analytical formula (20) becomes better. The
small discrepancy in the coherence length may come from
the fact, that we have used bulk value of the exchange field
while calculating the coherence length. However in our sys-
tem, the spin polarization oscillates around its bulk value,
and if we calculate the average value of the spin polariza-
tion m̄ = 1

NF +1

∑
n≤0 mn, we get a little bit smaller value

than the bulk one. So, we conclude, that the effective ex-
change splitting Ẽex also has to be smaller than its bulk
value. Indeed, when we used Ẽex to calculate the coher-
ence length, the agreement is improved. Another reason
may be the approximate form of the formula for the co-
herence length in the lattice case ξF ≈ 2t/Eex. In any case
these difficulties imply that the calculations would need to
be self-consistent with respect to mn as well as χn and jn.

3.2 Density of states and the Andreev levels

The proximity effect manifests itself not only in the pairing
amplitude and the spin polarization characteristics but
also in the density of states (DOS). The layer resolved
DOS is defined as

ρn(ω) = ρn↑(ω) + ρn↓(ω) =

− 1
π

∑
ky

Im(G11
nn(ω + i0+, ky) + G33

nn(ω + i0+, ky)) (21)

with Gij
nn(ω+i0+, ky) being the ijth element of the matrix

Green’s function-solution of equation (2). We shall also
use the density of states integrated over the total sample:
ρtot(ω) =

∑
n ρn(ω).
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Fig. 4. The layer resolved density of
states for the spin up (solid line) and
spin down (dashed line) electrons for
the exchange splitting Eex = 0.44. The
layer index is shown in the panels.

At this point we want to stress that, when we calculate
thermodynamic quantities (Eqs. (15–18)) we work on the
complex energy plane, but calculating the DOS we solve
equation (2) on the real energy axis only once. In fact
we have added a small imaginary part (0+ = 0.005) for
numerical purposes. The quantities: nn, mn, ∆n, Ay(n) as
determined by the previous self-consistent procedure allow
us to find the Green function on the real energy axis in
only one step. We also check if the new quantities like nn,
mn, etc. agree with the old ones. For all such calculations
the agreement has been found to be excellent.

While the general solution of equation (2) allows for
a current flow, in this section we show the results for a
solution for which the current has been constrained to
be zero.

To appreciate the effect of spin polarization in the FM
slab, let us recall again the case of no exchange splitting.
If the non-magnetic metal (NM) is in the contact with
superconductor (SC), the density of states on the NM

side shows features of the SC DOS, i.e. the pseudo-gap
opens up around the Fermi energy in the DOS. However it
never turns into a true gap, namely the NM DOS always
possess low energy excitations. Moreover, the gap in the
SC DOS also starts to fill up, due to the proximity of
the normal metal. So in this case we deal with gapless
superconductivity close to the interface of the NM/SC
heterostructure.

Compared to the above summary, the ferromagnet-
superconductor interface is enriched with a number of new
features. For instance, the SC DOS splits, if the exchange
field is small. For strong enough exchange field, SC gap
can be suppressed, indicating transition to the non-SC
(normal) phase. An example of the layer resolved density
of states for spin up (solid line) and down (dashed) is
shown in Figure 4. Evidently there is a pseudogap in the
FM DOS, indicating that superconducting correlations
are present in the FM layers. This effect is particularly
strong for the layer index n = 0 and −1. On the other
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I FM SC

Fig. 5. Schematic view of the semi-classical paths of imping-
ing electrons and reflected holes corresponding to the different
Andreev bound states.

hand, the proximity of the ferromagnet leads to the ex-
istence of low energy states in the SC DOS. This effect
is also observed in NM/SC heterostructure but here we
also notice differences in the spin up and spin down DOS
on the SC layers close to the interface. These are clear
manifestations of the FM proximity effect. The density
of states (its polarization) on SC side is very similar to
the density of states of a superconductor in an external
magnetic field [32].

The most interesting physics of the heterostructures
we consider, is the formation of Andreev bound states
in the NM or FM layers. They are ‘particle in a box’
like states which can be associated with the semiclassical
orbits bouncing back and forth between the SC and I
regions, as depicted in Figure 5. As is well known in the
case of NM layers the reflections at the SC are Andreev
ones, while those at the I are normal reflections [22]. The
arrows in Figure 5 point along the momenta of the particle
segment of the orbit. Its y component is ky which labels
the state. Clearly, the collection of states labelled in this
way forms an Andreev band.

For the normal metal-superconductor heterostructure,
Andreev bound states (bands) are symmetrically placed
with respect to the Fermi energy. Of course the position
of these states changes with the thickness of the sam-
ple. As we increase the size of the sample, the Andreev
bound states approach the Fermi energy, but they will
never reach it. In other words, there is no possibility of
crossing the Fermi level. Somewhat surprisingly, the sit-
uation is quite different for the FM/SC structure [16].
In this case the bound state energies can cross the Fermi
level. In short they can become the zero-energy mid-gap
states [21]. This situation is illustrated, for ky = 0, in Fig-
ure 6, where the bound state energies are plotted against
the exchange splitting.

If we take into account states for different ky (Andreev
band), the situation is more complicated as in general the
states with different symmetry of the wave function can
mix, and so we are not able to separate Andreev bands
so easily. The example of such Andreev bands rather than
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Fig. 6. The position of the Andreev bound states vs. ex-
change splitting Eex for the 20 layers thick ferromagnet. The
solid (dashed) line corresponds to the spin up (down) electrons.
Note that energy is now measured in units of the bulk super-
conductor order parameter ∆S . The basic physics represented
by this plot is the same as the ω/∆S vs. d (thickness of the
FM sample) curves of reference [16].
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the spin up electrons for various values of the exchange split-
ting Eex indicated on the picture. Note the shift of the An-
dreev bound states (bands) with exchange splitting. The DOS
for spin down electrons can be easily obtained by reflection of
the spin up electrons DOS with respect to the Fermi energy
εF = 0.

states is shown in Figure 7, where the density of states
of the spin up electrons is plotted for a few values of the
exchange splitting.

As we shall report presently the fact that the Andreev
bound states can cross the Fermi level has remarkable con-
sequences: it leads to the generation of the spontaneous
current in the ground state.

In fact the situation is rather similar to that of ex-
otic superconductors (with non-s-wave order parameter),
where the surface DOS shows the zero-energy state, lead-
ing to the spontaneously generated current. However the
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ground state.

origin of this state is quite different, as there it comes from
the symmetry related sign change of the order parameter
at the surface [21]. Here, in the FM/SC heterostructure,
the zero-energy state comes from the oscillatory behaviour
of the pairing amplitude (χ) in FM , which changes its
phase by π each time crosses zero. Nevertheless it leads to
the same effect: a spontaneously generated current.

4 Current in the ground state

4.1 Splitting of the zero energy state

The most remarkable feature of our calculations is that the
solution of the SPHFG equations frequently converges to
a solution with the finite current jy(n) even though the
external vector potential is zero. The generation of the
spontaneous current is strictly related to the crossing of
the Andreev bound states through the Fermi energy. In
Figure 7, we have plotted the DOS for different values
of the exchange splitting for calculations where the cur-
rent was allowed to develop in the y-direction. For the
Eex = 0.13 we observe that spontaneous current is gener-
ated in the ground state. We have checked that the solu-
tion with the current flowing is the true ground state, as it
has energy lower than solution without the current. Physi-
cally, in the presence of the current, the zero energy states
split because of the momentum dependence of a p ·v con-
tribution to the quasiparticle energies where the velocity
vector is defined by the current J = env. The example of
such a Doppler splitting in the DOS is shown in Figure 8
for the exchange field Eex = 0.13. We can see that, besides
the zero energy state, the other Andreev states also are
split. It turns out that the splitting of these states is only
weakly sensitive to the exchange field Eex, but it strongly
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Fig. 9. The layer resolved density of states at the Fermi energy
εF = 0 for different exchange splittings. The filled (empty)
symbols correspond to the solution with (without) the current.

depends on the thickness of the ferromagnetic slab and it
decreases as the thickness increases.

Interestingly, we have found a simple relation between
the splitting of the zero energy state δ and the vector
potential Ay(n). This is given by:

δ ≈ 2etĀy (22)

where Āy is the value of the vector potential Ay(n) av-
eraged over the FM side of the system only, i.e. Āy =

1
NF +1

∑
n≤0 Ay(n).

Corresponding to the splitting of the zero energy
states, when the current flows, we find differences in the
DOS at the Fermi level. In fact, the difference is quite
small. The main behaviour remains the same. The com-
parison of the density of states at the Fermi energy for
both cases (J = 0 and J 	= 0) is shown in Figure 9. The
DOS for the NM/SC structure (dashed line with circles)
is also drawn. As we can see, the main features remain
more or less the same, in particular the period of the os-
cillations. Similarly like the spin polarization (Fig. 2) and
pairing amplitude (Fig. 3), the density of states at the
Fermi level shows decreasing period of the oscillations as
the exchange splitting increases.

4.2 Spontaneous current and the magnetic flux

As we already discussed, the zero energy state is respon-
sible for the generation of the spontaneous current in the
system. The typical example of such a current, flowing par-
allel to the FM/SC interface, (jtot

y (n) = jy↑(n) + jy↓(n))
is shown in Figure 10 for a few values of the exchange split-
ting. Evidently, the behaviour of the current, as a function
of the layer index, is very similar to the density of states
at the Fermi level. For example, if we compare the dashed
curve with the triangles in Figure 10 to the dashed or solid
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line with triangles in Figure 9, we readily notice the sim-
ilarity in the oscillating nature of the current and DOS
respectively.

Another important issue is the distribution of the cur-
rent through the whole trilayer structure. We find that it
flows mostly in the positive y direction on ferromagnetic
side and in the negative direction in the superconductor.
Notably the total current, integrated over the whole sam-
ple, is equal to zero within numerical accuracy. This is as
it should be for the true ground state and found to be
in the FFLO state, where the current associated with the
unpaired electrons is balanced by the supercurrent flowing
in the opposite direction.

While the total current in the system is equal to
zero, the current integrated over FM side only (J tot

FM =∑
n≤0 J tot

y (n)) has a finite value, almost independent of
the exchange splitting. But that current is very sensitive to
the thickness of the FM slab, and for example for NF = 10
J tot

FM ≈ 0.08 e�t (0.008 per layer), while for NF = 20 we
have J tot

FM ≈ 0.035 e�t (0.00175 per layer). This suggests
that the effect associated with the spontaneous current is
very important in the samples of the small thicknesses and
it seems to play minor role if the size of FM part of the
system is large.

Obviously, the above current distribution should lead
to the generation of the magnetic flux through the sample.
In fact we have found that again, as for the current, the
magnetic flux bounded by the layers only weakly depends
on the exchange splitting but it does change with the dis-
tance from the interface. For NF = 10 the magnetic flux
Φtot =

∑
n≤0 Φn ≈ 0.45Φ0, where Φ0 = h/2e is the flux

quantum. This gives a flux per plaquette, associated with
the layers n and n + 1, Φn ≈ 0.045Φ0. On the other hand,
for NF = 20 we have Φtot ≈ 0.25Φ0 and Φn ≈ 0.0125Φ0

respectively.
The typical layer dependence of the spontaneous mag-

netic flux Φn (magnetic flux through a plaquette) is shown
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Fig. 11. The (spontaneous) magnetic flux per plaquette as-
sociated with layer n and n+1 for a number of exchange split-
tings. Each curve corresponds to the related current shown in
Figure 10. Φ0 = h/2e is the flux quantum and a is the lattice
constant in units of Å.

in Figure 11. We can see that while there are small dif-
ferences in the behaviour on the FM and SC sides of the
sample, related to the different current distributions (see
Fig. 10), the total magnetic flux Φtot is roughly the same
and more or less independent of the exchange splitting.

4.3 Quasiparticle current vs. supercurrent

As we have recalled above, in the bulk FFLO state the to-
tal current vanishes. Moreover, the quasiparticle current
Jqp is exactly equal to the supercurrent Jsc (related to
the G12

nn(ω, ky) in Eq. (2)) with opposite sign. This means
that in a bulk layered superconductor, these two currents
cancel each other layer by layer, i.e. Jqp(n) = −Jsc(n).
Evidently this is the case because the exchange field and
superconducting pairing potential are present in the whole
system. By contrast, in the case of the FM/SC het-
erostructure, the exchange field and the pairing potential
are spatially separated. In this case Jqp(n) is not equal to
−Jsc(n) within each layer, but it is when integrated over
the whole sample, i.e.

∑
n

Jqp(n) = −
∑

n

Jsc(n). (23)

Thus the lack of exact cancellation of the current layer by
layer leads to a finite current on both sides of the inter-
face, but zero in the whole sample. An example of such
behaviour is shown in Figure 12. We see, that the quasi-
particle part of the total current (solid line) is almost in
anti-phase to the supercurrent (dashed line). Moreover, on
the superconducting side, the current is carried mainly by
quasiparticles. This is rather surprising since usually one
expects current to be related to the Cooper pairs. However
due to the proximity of the ferromagnet, there are also
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shown in Figure 10.

‘normal’ particles in the superconductor near the inter-
face. These certainly contribute to the total current, like
in the bulk FFLO state. In our system, only the Cooper
pairs close to the interface can feel the exchange field of
the ferromagnet and have moving center of mass. Note
that magnetization goes to zero very quickly as we go
away from the interface (see Fig. 2). Clearly this makes
the supercurrent equal to zero except within a few SC
layers.

Interestingly we also found that whenever the pairing
amplitude χn changes sign, the local quasiparticle current
as well as the local supercurrent becomes large. In other
words, the maxima of the Jqp(n) and Jsc(n) correspond
to the zeros of the pairing amplitude χn.

4.4 The pairing amplitude at I/FM interface

As we have mentioned above, the ground state does not
carry current for all values of the exchange splitting. We
have shown, that whenever there is a current flowing, there
are the Andreev bound states crossing the Fermi level.
Also we have found another quantity which is related to
the current flowing. Namely, the pairing amplitude at the
FM/I interface (i.e. n = −NF – see Fig. 1). If χ−NF

changes its sign, the spontaneous current is generated.
This happens exactly for the same values of the exchange
splitting, for which a band of the Andreev bound states
crosses the Fermi energy. Moreover, the presence or ab-
sence of the current has a dramatic effect on the pairing
amplitude χ−NF . This can be seen in Figure 13, where
χ−NF is plotted as a function of the dimensionless param-
eter Θ = 2.79dEex/πt. As implied by equation (17), χn

is the real part of a complex order parameter which has
an amplitude χ̄n and a phase ϕ̄n. Clearly, Figure 13 can
be read as ϕ̄−NF flipping from ϕ0

−NF
where χ−NF has the
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Fig. 13. Pairing amplitude at the FM surface opposite to
superconductor (n = −NF ) as a function of the dimensionless
parameter Θ = 2.79dEex/πt.

same sign as χ in SC, to ϕ−NF = π, where χ−NF has the
opposite sign.

Evidently, the pairing amplitude is pinned to zero by
the spontaneous current in the system. Introducing the
dimensionless quantity Θ we can say, that system is in
a π-like phase (for odd Θ) or in the 0-phase (even Θ), in
close analogy to studies on the π-effect in the SC/FM/SC
structure by Chtchelkatchev et al. [33]. In reference [23],
we have shown a similar picture for the thickness of the
FM slab equal to 10 layers. Here we show the correspond-
ing results for NF = 20 layers. To be precise in the present
case Θ has slightly different value with prefactor 2.79 (not
3 as it was for 10 layers case). This discrepancy may come
from the fact, that effective exchange splitting is little bit
smaller than its bulk value (see discussion in Sect. 3.1).

4.5 Band filling and the polarization of the current

As our system consists of a ferromagnet and a supercon-
ductor, we can expect the spontaneous current to be po-
larized. However, up to now, we have presented results
for the special case of particle-hole symmetry (ne = 1
or µ = 0) and we found that the spontaneous current
was, in fact, not spin-polarized. The reason is as follows.
Within linear response theory, the total current can be
divided into two parts: a diamagnetic one – giving the re-
sponse of the bulk density, and a paramagnetic one, which
is proportional to the density of states at the Fermi en-
ergy, as it comes from the deformation of the wave func-
tion at the Fermi surface [34]. Now if we note, that for
the particle-hole symmetric case (ne = 1), the spin up
ρtot↑(εF ) and spin down ρtot↓(εF ) DOS at the Fermi en-
ergy are equal, we are not surprised that the polariza-
tion of the current is equal to zero. As we go away from
the half filling, the difference between spin up and spin
down DOS (∆ρtot(εF ) = ρtot↑(εF ) − ρtot↓(εF )) starts
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to play a role as it leads to the polarization of the cur-
rent. A typical example of the polarization of the current
∆Jy(n) = Jy↑(n) − Jy↓(n) is shown in Figure 14 for con-
centration of electrons ne = 0.781 and 0.622. To make
the two calculations comparable we have adjusted the pa-
rameters so the value of the SC order parameter would
be the same. This was achieved by shifting of the cou-
pling constant US to −2.129 for ne = 0.781, −2.345 for
ne = 0.622 as well as chemical potential to µ = −0.5 and
−1.0 respectively.

The total polarization of the current ∆J tot =∑
n Jy(n) is of order 10−3 and does not depend much on

the concentration of electrons ne. Moreover, we have found
a very interesting property of this current, namely, the
sign of the polarization of the current depends on whether
ne < 1 or > 1. This means, that for ne = 1 + x we get
the same results as for ne = 1 − x, except of the sign
of the polarization of the current. This effect can be ex-
plained very easily if we recall that polarization of the
current is proportional to the difference in the DOS at
the Fermi energy, and one can check, that ∆ρtot(εF ) is an
antisymmetric function under the shift 1− x → 1 + x, i.e.
∆ρtot(εF , 1 − x) = −∆ρtot(εF , 1 + x).

4.6 2D FFLO-like state

Before closing our discussion on the spontaneous current
we wish to make a remark regarding the nature of the
ground state in our system. To begin with we recall that
recently it has been predicted [7,36] that under certain
conditions a 3D-FFLO state is energetically more favor-
able than the usual 1D state. The 3D state manifests itself
in oscillatory behavior of the pairing amplitude not only
in the direction perpendicular to the interface but also in
directions parallel to it. Moreover, changing the thickness

of the FM slab, one can switch the ground state of the
system between the 3D and the 1D-FFLO state [7,36].

The point we wish to make is that the current carrying
ground state of our system can be interpreted as a 2D-
FFLO state. The argument is as follows: The oscillations
of the pairing amplitude in the direction perpendicular
to the interface occur regardless whether the spontaneous
current flows or not. Within the FFLO theory [8,9], the
period of the oscillations is related to the x-component
of the center of mass momentum of the Cooper pair Q.
On the FM side of our model the FFLO periodicity is
governed by Q = (2Eex/vF )vF

vF
, where vF is the Fermi

velocity vector, measured with respect to the x axis (see
Fig. 1). This can be interpreted as the usual 1D-FFLO
state in confined geometry. On the other hand, when the
current flows parallel to the interface, there is a finite vec-
tor potential in the y-direction. This can be regarded as a
y-component of the Q-vector. So one can say that when
the spontaneous current flows, the 2D-FFLO state is re-
alized. Moreover when the FM thickness is changed the
ground state of the system is switched between 2D- and
1D-state, which manifests itself in spontaneous current
flow or in the lack of it. Clearly this behavior is consis-
tent with the findings of Izyumov et al. [36,7]. However
in their theory the y-component of Q remained constant
over the whole FM region, vanished in superconductor
and was determined by minimizing the total energy of the
system. By contrast, in the present calculations this vec-
tor was found during the self-consistency procedure, as it
is related to the vector potential in the y-direction. More-
over, unlike in references [7,36], the effective Qy changes
its value from layer to layer. Evidently this leads to an
inhomogenous FFLO-like state in both dimensions.

5 How to observe the current
and its polarization?

Clearly, the important issue raised by the above results
is “how to observe experimentally the predicted current?”
But first of all let’s estimate how big this current is. If
we assume a bandwidth equal to 1 eV, the average cur-
rent per layer is of order of tenths of µA. In general the
polarization of the ferromagnet can be large, however it
cannot be complete. There must be a small number of the
minority electrons. In other words it doesn’t matter how
big the ratio ξF /ξS is, we should always observe the cur-
rent. The next point is the thickness of the FM region.
Namely, the current is bigger for a thinner sample, but
even for thickness of order of several hundreds of ξF , we
expect the current to be detectable.

Of course, the presence of the current should mani-
fest itself in a number of experiments. For example, since
there is a net magnetic flux associated with the current,
it could be detected by SQUID experiments or by Hall
probes [37]. Another possibility is to measure the conduc-
tance across the FM/SC junction [35]. In such experi-
ments the splitting of the zero energy state in the DOS is
expected to be observed and, as indicated by equation (22)
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the energy distance between the split peaks measures the
current flowing. Finally one can also use some local probes
like STM techniques to measure the layer resolved DOS.

Confirming that the current is polarized is more trou-
blesome. As we have shown, to get polarized current the
system has to be away from the ne = 1 point. In our case,
to avoid a Fermi energy mismatch, both the FM and SC
are moved from ne = 1. Fortunately, this is only neces-
sary for the ferromagnet. The superconductor can be in
a particle-hole symmetric state. In short, realistic estima-
tions of the spin polarization of the spontaneous current
require more material specific calculations.

6 Conclusions

In conclusion, we have studied properties of the insula-
tor (or vacuum)-ferromagnet-superconductor trilayer. We
have shown, that such a structure supports Andreev
bound states forming Andreev bands, whose position can
be tuned by thickness of the sample or exchange splitting.
Moreover, when a band crosses the Fermi energy, a spon-
taneous current (and magnetic flux) is generated in the
ground state. We have found a relation between the pair-
ing amplitude in the ferromagnet, which has oscillatory
behaviour, and the Andreev bound states. Namely, when
the Andreev band crosses the Fermi energy the pairing
amplitude at the surface opposite to the FM/SC inter-
face changes sign, and as long as current flows it is pinned
to zero. The polarization of the current strongly depends
on the band filling and is related to the difference in the
spin up and spin down density of states at the Fermi level.
We also have discussed the question of the supercurrent vs.
quasiparticle current and gave some experimental clues on
how to observe that current. The presented results can be
attributed to the FFLO effect influenced Andreev bound
states. Finally we would like to stress that the experi-
mental observation of the predicted spontaneous current
would constitute a definitive proof of the FFLO nature
of the ground state in I/FM/SC heterostructures.
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15. V. Prokić, A.I. Buzdin, L. Dobrosavljević-Grujić, Phys.
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